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THE TRANSONIC FLOW OF GAS OVER A CONVEX CORNER * 

V. N. DIESPEROV 

The transoic flow of gas over a convex corner with straight line generatrices, in 

which the Vaglio-Laurin flow /l/ is realized, is considered. This means that in 

the external potential flow upstream of the corner point all flow parameters are 

known in the neighborhood of the latter /2-S/. The favorable pressure gradient 
becomes infinite at the approach to the corner point. 

We investigate the interaction between the boundary layer and the external potential flow 

in the corner point neighborhood, and seek the solution by introducing perturbations in the 
velocity vector longitudinal component U at the corner point. As the small parameters we 
take the distance upstream from the corner apex and the reciprocal of the Reynolds number of 

the oncoming potential stream. Expansions of the flow parameters valid in the basic part of 

the boundary layer are, then, merged with their expansions in the external potential flow and 

in the thin boundary layer region next to the wall, which must be taken into account if the 

boundary conditions are to be satisfied. This makes possible the determination of the be- 

havior of I in the neighborhood of the rectilinear generatrix, which corresponds to the 
Vaglio-Laurin singularity. As shown in /6- 13/, the knowledge of the behavior of I: and of 

the dependence in the external flow on the boundary layer displacement thickness isnecessary 

for determining all characteristic dimensions in the free interaction region. 

1, We use the Cartesian system of coordinates z,y whose origin lies at the corner 

point and the negative semiaxis .X coincides with its rectilinear generatrix; V, and I+ are 

velocity vector components; (I is the flow potential, 11 is the pressure, p is the density, 1 

is the temperature, t! is the speed of sound, and y is the specific heat ratio; f_ is a charact- 

eristic dimension of the external potential flow, LL is the first coefficient of viscosity, k 

is the thermal conductivity coefficient; He and 1'r are, respectively, the Reynolds andPrandt1 

numbers of the oncoming stream. The critical values of all parameters are taken as their 

characteristic values which are denoted by an asterisk. The thermodynamic variables are re- 

lated by the equation of state of perfect gas. Below, all flow parameters and equations link- 

ing these are assumed to be dimensionless. 

The external stream in the region of .r((i is potential and defined by Euler's equations. 

In the corner point neighborhood the solution can be sought in the form /l-55/ 

$ J -1 y’+” (j) + .y”:‘ll (E) + . ..( 5 (I ~- p)-’ 5 “f I (1.1) 

Solution (1.1) for z<(l, 11 0 satisfies the impermeability condition alp/dy V" 0 
and for x> 0. !I- 0 becomes the Prandtl -Mayer flow. It was also shown in /3-55/ that it is 

not possible to continue solution (1.1) into the region r>O. y +O and that it is necessary 

to introduce a shock wave. 

Functions f. and fI satisfy the ordinary differential equations 

( 
25 F2 __ f"' fo"- ~ 
XT> 1 

25 E&-, $ fo=O 

(~i’-fa.jfl”-(~~i_f~)fl’~t ~frl= 

(1 !. .p 
---,[(2~-1)f,.“/~~l-~(7J,-5M~)(i,’-~~~~)] * 

The Vaglio-Laurin solution f,, can be represented in the parametric form /2,3/ 

fo C3 (t -- I)-'/' (7P - 140 t + IWO)/ 21 (1.2) 

E -: c (t - I)"/* (1 - "/,), 1 < t ( 03, c const 

The behavior of velocity components u, and i',l, pressure p, and density p at 5 < 0 
and!/+0 based on solutions (1.2) is defined as follows: 

v, ~. 1 - d, (-- 5)' b - d, (--r)'l' -I- .) rv _L - m,y(--j_)-' i- (1.3) 
m,y (- 5'/*) + 
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Expansions (1.3) imply that the pressure gradient in the neighborhood of the corner point 
is favorable and 

dP ~=-~~yd,(-~x)-‘i~-~~yd,(-~a)-‘~-->-~, (-I)+0 (1.4) 

2, The interaction between the flowing gas and the surface of the corner (x<O) results 
in the formation of a boundary layer which is subjected to the action of the external flow 
with the favorable pressure gradient (1.4). We define the boundary layer by equations of con- 
ventional form 

Y = He’by, vy = He-‘/zl/;, He == pL* / (p*n,L) 

Below, we assume a linear dependence of the coefficients of viscosity and thermal con- 
ductivity on temperature: {L = T and k = T. 

The solution of system (2.1) must satisfy the following boundary conditions. When Y = 0, 
X(0 the velocity components v, = V, = 0 and the corner surface temperature roust be 

either constant or, in the case of a heat insulated wall, 3TIBY = 0. When Y-+00, x<o 
the velocity component V, and density p must merge with expansions (1.3). 

Let us assume that there is a solution that satisfies the specified conditions.We denote 
by u(Y) the profile of the velocity vector longitudinal component at point 5 = 0, V(Y) 
~‘~(0, Y), and by R(Y) the density, and seek the solution of system (2.1) in the neighborhood 
of the corner apex in the form of expansions 

p = 1 + yd, (- x)*/a + yd, (- .)‘I6 + . . . (2.2) 

v, = V (Y) + (- x)‘ls [u,,ln (- 5) + uoll + (- x)‘lh [u,,ln2 x 

(-- z) i- u,,ln (- x) + +I + . . . 
V, = (- x)+ [V,,ln (- 5) + V,,] + (- x)-‘/s [V,,ln? (-5) + 

VJn (- x) + VI21 + . . . 

p = R (Y) + (- xp Ipooln(- 5) + poll + (- X)'/' Ip,,ln'. 

C-4 + puln C-4 + pIi i- . 

When Y+ 00 we inmlediately obtain II = c'= 1. The functions of Y in expansions (2.2) 
satisfy systems of ordinary differential equations which can be presented in the general form 

- +(n + 1)(p$ + U,iR) -1. $(RVni)= P:i (2.3) 

- -$ (n f 1) VRU,~ + V’RV,i = Pii 

v> (n + 1) up,, - R’V,, := P$ 

System (2.3) reduces to solving the single equation 

VV,i - V’V,, = [V (PAi -F P$) - P:ti] / R 

Having solved Eqs. (2.4) we determine functions &i and pni using formulas 

(2.4) 

(2.5) 

For i = 0, n = 0 system (2.3) is homogeneous and its solution is of the form 

V,, = A,,V (Y), poo = 5/2 A,,R’ (Y), u,,,, == 5/2AooVi(Y) (2.6) 

For n = 0, i L 1 the solution of system (2.4), (2.5) can be represented in the form 

~OI= [A,, i- $&J(Y)] V (Y) 

Vo,=[+AOI-?A 00 .I- d,,l (Y) 1 V’ (Y) - & 

POI=[&X-$%,o N-d,l(Y)]R’(Y)+d,R 

(2.7) 
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Z(Y)= S‘wdY 
1’ 

The behavior of U(Y) and R(Y) as Y-t00 is assumed such that the integral I(Y) is con- 

vergent. The solution for functions with subscripts n = 1 and i -.O is of the form 

v,, 1 A,,.!7 (Y) -I- 5i2 R,,W’ (Y) 
(2.8) 

” ,o z 6/t M,,U (Y) -t 61% Aoo2 U” (Y)l 

Pa1 v, [A,, H’ (Y) -t 512 A,,” H” (Y)l 

The solutions for functions with subscripts n = 1 and i : 1, 2 are not presented here 

owing to their unwieldiness. Note that for n 1 and i 1 the right-hand sides of system 

(2.3) approach zero as Y-t 00, which means that 

lim v,, A,,, lim ul, lim pl, O,Y+cc (2.9) 

In the case of R _ 1 and i 2 we have 

lim Pm2 -= 4/5 d,, lim P,,” ‘/s d, -I- vi (1 - y) do? 

lim {[(PIT* -I- P,,“) CT - Ps2?l / R) =: - ?/, (1 + y) d,2, Y -+ m 

from which and Eqs. (2.4) and (2.5) follows 

v,, A,, - 2/s (1 i- y) d,*Y + 0 (I), U,? : - d, + 0 (,I) 
(2.10) 

P 12 ~z d, i- ‘/Z (1 - y) cl,* + 0 (I), Y -+ 00 
Note that in the considered approximation the right-hand sides of system (2.3) do not 

contain dissipative terms. Hence the flow in the main part of the boundary layer is vertical, 

and it is possible to neglect in it the effects of dissipative factors and represent it by 

expansions (2.2). 
Finally, we merge expansions (1.3) and (2.2). The external variable y is related to the 

internal Y by formula y z-x Re-‘:zY. Formulas (2.6)- (2.10) imply that the external expansion 

of the internal expansion (2.2) for U, and p fully match their expansions (1.3) in the ex- 

ternal potential stream. For L'~ we have 

liy z - 2/5 (1 + y) d,*y + Rtl-‘/t {IA,,ln (- 2) +_4,,1 (- x)-“h -4 (2.11) 

0 [(- z)-'i;ln (- 5)l) 

We thus find that for merging in the first approximation uy in the potential stream it 

is necessary to consider in expansions (2.2) terms of order up to (--X)-'/A. 

3, However it is not possible to satisfy the boundary conditions at the corner sur- 

face, using expansion (2.2). Because of this it is necessary to introduce in the boundary 

layer region next to the wall a thin sublayer in which viscosity plays a predominant part. 

As implied by (2.2) the boundary layer displacement thickness is defined by 6- Re-‘la (-zG)‘/. 
In(- x). The effect of heat conduction on the flow pattern is minor, since under the specif- 

ied thermal conditions at the corner surface and low velocities of motion the compressibility 

of gas manifests itself only weakly. For the sublayer we seek a solution of the form 

U_< : (- 2)':*LL0 (11) + (- S)%/, (n) + ., p K (0) ~C 
(3.1) 

(- “)‘$3, (11) -/- 

v, m: (- z)pv,(ll) + v, (II) + 

p = 1 + yd, (- s)‘:’ + yd, (- Z)‘!b + . _, ‘1 = Y / (- zy 

The exponents of (-z) in the first terms of expansions of yx and V,, and of the 

self-similar variable q are determined by the condition that along lines n = const the terms 

of continuity and of motion in Eqs. (2.1) must be of the same order. This is equivalent to 

the requirement that the forces of friction, inertia, and pressure must play equal parts in 

shaping the flow in the sublayer. The temperature is determined by the equation of state 

T = &) [I -'- (-.ri'+&- R&) '_ _._I 

We introduce the stream function 

Y ~~ (- 2)“’ F, (q) i- (- 5) F, (q) + . 

Functions F, and F,, and the velocity components are related by formulas 

ZLg = Fo', I,', = "is r;, - z/s qF,‘, u, = E,’ _ +E& 

V, z F, - 21.5 qF, - p,vo / R (0) 

(3.2) 



The transonic flow of gas over a convex corner 41 

For determining the first approximations functions we have for Fo the equations 

-‘““-,_+Fo?&_ (3.3) 
R”(U) dq’ 

and for the second approximation of functions F1 and p1 we have the system 

_. ___& I:,” + + FoF/ - + F,‘F,’ + F/F, - L d-z 
5 R(U) 

i 3 -- 
I [ R(") 5 -pplFiP f Fo-& (P&')] + 

&-&[(Ho-~&)F~]]=& 

(3.4) 

1 

Ra(U) Pr pl" + -$o(P, - np1') - VopP,'= (v - l)uo'* i- 

+ R (0) douo = N1 

For Eqs. (3.3) and (3.4) we have the following boundary conditions. As ?l-+oo expans- 
ions (3.1) must merge with expansions (2.2). For Y = 0 we have F. =Fo’ = FL = F,’ = 0. When 
the temperature of the corner surface is constant, then ~~(0) = PR(O), if however the corner 
surface is thermally insulated, then ~'~(0) = 0. Note that Eqs. (3.4) are linear and the solu- 
tion of the second of these is independent of the first. 

When n--+0 the solutions for F,,pl and F, can be represented in the form 

F. = 2; &,q”“, p, = 2 cti,,q”, F1 = ,$ x,~l*+l (3.5) 
n* li=#l 78=0 

where the coefficient PO is arbitrary, &-15-l d,R*(O), f& yL 0, and the remaining P,,(n > 2) 
are determined by p0 and P,. The coefficients ~~~~ and o1 are arbitrary, and the remaining 
~,(n > 2) are determined by oo, or, PO and pl. The quantity x0 is also arbitrary, andx,(n > 
1) are expressed in terms of x,,, PO, P1, tile and Q~. 

The asymptotic behavior of solution F,, as I)+ m, is of the form 

Functions p1 and 
hand sides of E, 
n + 00 conforms 

F. = Boq’/’ + B,+ In q + Bolq”* + . . . 
(3.6) 

B~=-$&&, 
0 

F1 are obtained by solving inhomogeneous equations. As 11-f 00, the right- 
and N1 behave as O(n) and 0 (r/q). The asymptotic behavior of P1 and F,, as 
to 

p1 = Cl’1 - -5 9 *lm--coI... (3.7) 

F, :; M,rl’~: + M,,~l'/~ln 1) + M,, ll'/l + . . . 

The'properties of the asymptotic expansions of p,, and F1 for n-0 and 11-f~ obtained 
here coincide with those in /14,15/. In the expansions of solutions (3.6) and (3.7) for F,, 

F,, and p, only the number of terms necessary for merging expansions (3.1) with the terms of 
expansions (2.2) of order (- x)'k If (- x)Q is assumed small, the external variable 1. is 
related to the internal 1) by the formula 11 = I;/(- x)'/J. 

The external expansion of the internal expansion represented in terms of external variabl- 
es is of the form 

[1/~B~InYS(B~-~1/2BOl)JY-“‘(-x)a~+..., p=R(O)+ 

CIY + . . 

v, = --4/zs B,Y”’ (- sp In (- I) -L 

12/6~~InY -+ z/s(Bo~ - B,)]Y”‘(- z)-“~ + . . . 

Comparison with the internal expansion of the external expansion (2.2), expressed in 
terms of external variables yields the relation between constants and the behavior of funct- 
ions U(Y) and R(Y) as Y-+0. We have 

/loo= ($)‘_lf-, 
WR r”) 

Aol= -- 
15 B,*R (u) -&do 

b,, = T i-UzR [u_2 
\ 7 

i ,’ , do 
ou,t 1 dY - 

0 
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4, Let us revert to expansion (2.11). It is evident that owing to the displacing ef- 

fect of the boundary layer (more exactly, of its sublayer) it is necessary to introduce in 

expansion (1.1) for the external stream terms proportional to Rem'/' 

q = z + y',ajO (5) + $74fl(j) + Rem':1 ly'74 In y j_,a (Q 4 

y’l~j_~~(E)l + m: cpo + He-‘iy_, 

The function f_n satisfies the equation 

(4.1) 

Function f_lo satisfies the homogenous equation (4.1). AS E-t-00 the asymptotic behav- 

ior of f-10 and f-1, is defined by the expansions 

f+ = D:,, [ 5’ ‘6 L 0 (E-‘/3] + D:,,, [E-V + 0 (E-%)] 

f-n - De,, [E”’ -I- 0 (k”3] -t D!,, [g-:‘~ + 0 (E-“/b)] + 4/5 D”,&-“i&In F, 

The superscripts s and a correspond, respectively, to the symmetric and antisymmetric 

solutions. Using the obtained expansions we obtain the asymptotic behavior of velocity com- 
ponents for ~(0, Y+ 0, which correspond to the potential v-l 

R&/Q: 11 -- 
( 1 

; -I" + O(Re-1) 

(4.2) 

acF , 1 Re-'!z * = _ R&7 ,n Re-": _ D'r, _ L 
( 1 

-4:. 

B - 

Re-‘12 & DllolnY mk & D1,, 
[ 5p1( 1 

- f -“’ + O(Re-1) 

B= (1 + Y)' 3 
It is obvious that for the expansion of pressure in the main part of the boundary layer 

to be independent of coordinate Y it is necessary to set D_ro8 = 0. 
We seek a solution for the main part of the boundary layer, induced by the potential 

Re-'7*cp_,, of the form 

L'x = lo' (y) -i- 0 [(- x)275 In (- .z)l + Re-'la[u_,, In (- 5) + (4.3) 

U-J (- s)-‘/’ + 

vu = 0 I(- z)-‘/~ In (- x)1 + Re-‘1% IV-,, III (- X) + v_,,] ;: 
(- x)-a!’ + . 

P = R (Y) i 0 [(- X)“S In (- z)I + Re-'!z [p-l0 In (- X) + 

P-J (- .p + 

p = 1 i- 0 [( - CT)*/‘] + y Ro-'7: d_, (- x)-'/6 + . . 
d-, = ‘/s (1 '- y)-'l=D_,, 

The unknown functions in (4.3) satisfy the system of Eqs. (2.3) whose solutions are 

v-1, =: A_,& (Y), p-l0 ~- --SIaA_,,R’ (Y), u-,o ~~ 
-vgz4__10 U’ (Y) 

u-11 = - [ + A_11 + g A+, - d-J (Y)] U (Y) - $ 

pll= - [ + A-11 ~I- $ Aelo - d-11 (Y)] R’ (Y) + d_lR 

V_11 = [A_,1 - + d-11 (Y)] U (Y) 

Using these solutions it is possible to show that expansions (4.3) merge with the expans- 

ions of US and p in the external potential stream and induce perturbations of the potential 

Re-'y-"74 If.-20 (5) lny + f-21 (01 

To satisfy the boundary conditions at the corner surface it is necessary, as previously, 
to introduce the viscous sublayer. We seek for it a solution of the form 

t', = (- J)'~~u,, + (- z)'~u, + Re-'7x(- X)-I u_~ + . (4.4) 

v, >- (- 5)-S JTO + V, (q) + Re-‘12 (- z)-“s Kv_, + _.. 

p m= K (0) 1- (- z)'7bp1 (n) +- He-'72 (- ~)-':+p-~ (n) $ 
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We introduce function F_, defined by formulas 

u-1 = F+', V_, = - T5 F_, - It, q FL, 

and obtain for the determination of solution in the sublayer the following system: 

-&j+-+ F,,F:, -+-$ F,'F:, - +F$F-, =- -&& (4.5) 

i " 
-(Of-P-l ---e-1 --l&o I 

-&+&?_, = 
') 

R(O)[-_~-11((1+~dOIl-l]$_~-1[-$pl+~)Kli~i + 

v_l&'-i- Z(y - 1)&J'& 

The asymptotic behavior of solutions for F-1 and p_, as n-+0 is the same as that of F, 
and pl. As n-+ a3 we have 

F-~=ili%l?-‘l~-~~tl’/‘lng+..., p_l=C_lq-~-j-... 
0 

The merging of expansions (4.4) withexpansionsthat are valid in the basic part of the 
boundary layer and in the external potential flow yields relationships for contants in solu- 
tions and new terms in expansions of v(Y) andR(Y) as Y-+0 

5, The comparison of terms in expansions (4.3) for pressure and expansions (4.4) along 
lines 1 =const show that the terms related to the displacing effect of the boundary layer are 
at distances (-z)-ReJlu of the same order as the terms define the effect of the external 
potential stream. This means that in the neighborhood of the corner apex there is a region 
of free interaction that corresponds to the Vaglio-Laurin singularity. This result can be 
also obtained in another way /12,13/. For this it is necessary to know the behavior of 
U(Y) as Y-t0 and, also, the link between the boundary layer displacement thickness and the 
pressure induced by it. 

Let the basic profile U(Y)=O(Yz) for Y-O and r> 0. The free intexaction region has 
a three-layer structure /6--g/. A viscous incompressible sublayer lies next to the wall: in 
it the forces of pressure, inertia, and friction mutually balance themselves. We denote by a 
vinculum the variables and parameters of the stream whose order of magnitude in the sublayer 
is comparable with unity. Taking into account the equations of continuity and momenta (2.1) 
we obtain X = Re-?i., 1'= I@ B -Ip:- He-T& us zzz lic-fTx 

l’z, = R#.-B(l+3~,,, T = ?(Br. 

(5.1) 

a = p (2 !. ;) 

The solution for the main part of the boundary layer is sought in the form 

v* = (I(Y) --_ Il&-XuO(z, Y) +- . ..( I’,, = ne-Y’+“a, (I, V) (5.2) 

We have to determine in formulas (5.1) and (5.2) the exponents a,b,t, and X. In the 
transonic velocity range the flow deflection angle % is related to the relative pressurevaria- 
tion Ap by formula AA= O(%'iJ) and is determined by the displacing action of the viscous sub- 
layer. From this we obtain the missing formulas for CL, %. T, X: ~=@,x-a$~/~=3r/Z. We have 

2 ___ 3 
a=-, t!=&), x=B, z-=FJ z(l+/l=) 

which for L= a/* yield c1 = s/z,, p = 'fa. For r: =i we have the Blasius profile a = =I& fi = I/$& 
which conforms to the results in /13/. 

The author thanks 0. S. Ryzhov for interest in this work. 
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